Elektroteknik – Databaserad analys

Kurskod E903102
Studiepoäng 4
Lärandemål

Studerande behärskar numeriska verktyg för praktisk analys och visualisering av data, inkluderande grundläggande statistiska begrepp och frekvensanalys. Vidare behärskar studerande grunderna i maskininlärning med fokus på övervakad inlärning för regressionsmodeller och klassificeringsmodeller både gällande implementeringen av algoritmerna och utvärderingen av metoderna i MATLAB och/eller Octave.

Innehåll

Praktisk analys och visualisering av mätdata.
Medelvärde, standardavvikelse, fördelningsfunktioner, multivariabla och korrelerade observationer, normalisering av data.
Frekvensanalys, diskret Fourier-transform, periodiska funktioner, artefakter vid icke-periodiska sekvenser, fönsterfunktioner. Stokastiska signaler, auto- och korskorrelationer.
Övervakad inlärning:
– Linjär regression med en och flera variabler
– Numerisk optimering med gradient descent
– Olinjära transformationer, överanpassning och regularisering
– Olinjära modeller med artificiella neurala nätverk
– Logistisk regression och klassificering för två och flera klasser
– Artificiella neurala nätverk tillämpat på klassificering
Oövervakad inlärning och k-medelvärdeskluster (k-means cluster) algoritmen

Vitsordsskala

1-5 (för betygssättning)

Ämnesområde

Elektroteknik

Utbildningsprogram

Utbildningsprogrammet för elektroteknik

Examination

Övningar och tentamen/projektuppgift

Bedömningskriterier:

Tillfredsställande insikter (1-2)
Den studerande
– har grundläggande förståelse för hur man kan utnyttja teknisk mjukvara för att analysera och visualisera data
– känner till algoritmer för anpassning av modeller till data
– känner till övervakad och oövervakad inlärning
– känner till frekvensanalys

Goda insikter (3-4)
Den studerande
– har god förståelse för hur man kan utnyttja teknisk mjukvara för att analysera och visualisera data
– kan utnyttja och modifiera algoritmer för anpassning av modeller till data
– kan utnyttja enkla algoritmer både för övervakad och oövervakad inlärning
– kan utnyttja metoder för frekvensanalys, visualisera och tolka resultaten
– kan sammanfatta sin analys i enklare rapporter

Utmärkta insikter (5)
Den studerande
– har utmärkt förståelse för hur man kan utnyttja teknisk mjukvara för att analysera och visualisera data
– kan välja, utnyttja och modifiera algoritmer för anpassning av modeller till data
– kan välja och implementera enkla algoritmer både för övervakad och oövervakad inlärning
– förstår och kan implementera metoder för frekvensanalys, visualisera och tolka resultaten
– förstår och kan sammanfatta sin analys och reflektera över resultaten i rapporter

Assignments and exam/project assignment

Kurslitteratur och studiematerial

Eget material tillgängligt via kursens hemsida.
Manualer och resurser på internet.

Lecture notes available through the homepage of the course.
Manuals and other online resources.

Förkunskaper

E903201 Introduktion till Matlab/Octave

Arbetsformer

Föreläsningar varvade med interaktiva demonstrationer, exempel, laborationer och projektuppgifter.

Lectures with interactive demonstrations, examples and assignments.

Utskriven 01 april 2025 kl 03:36